Endurance training-induced accumulation of muscle triglycerides is coupled to upregulation of stearoyl-CoA desaturase 1.
نویسندگان
چکیده
Stearoyl-CoA desaturase (SCD), a rate-limiting enzyme in the biosynthesis of monounsaturated fatty acids, has recently been shown to be a critical control point in regulation of liver and skeletal muscle metabolism. Herein, we demonstrate that endurance training significantly increases both SCD1 mRNA and protein levels in the soleus muscle, whereas it does not affect SCD1 expression in the EDL muscle and liver. Desaturation index (18:1Δ9/18:0 ratio), an indirect indicator of SCD1 activity, was also significantly higher (3.6-fold) in soleus of trained rats compared with untrained animals. Consistent with greater SCD1 expression/activity, the contents of free fatty acids, diacylglycerol, and triglyceride were elevated in soleus of trained rats. However, training did not affect lipid concentration in EDL and liver. Additionally, endurance training activated the AMP-activated protein kinase pathway as well as increased peroxisome proliferator-activated receptor (PPAR)-δ and PPARα gene expression and activity in soleus and liver. Increased lipid accumulation in soleus was coupled with elevated protein levels of fatty acid synthase, mRNA levels of diacylglycerol acyltransferase and glycerol-3-phosphate transferase, as well as increased levels of proteins involved in fatty acid transport (fatty acid translocase/CD36, fatty acid transport protein 1). Interestingly, sterol regulatory element-binding protein (SREBP)-1c expression and SREBP-1 protein levels were not affected by exercise training. Together, the obtained data suggest that SCD1 upregulation plays an important role in adaptation of oxidative muscle to endurance training.
منابع مشابه
Investigation of (Stearoyl-CoA Desaturase 1) SCD1 Gene Polymorphism in Khuzestan Buffalo Population Using PCR-RFLPMethod
Stearoyl-CoA desaturase (SCD) is a rate-limiting enzyme in the biosynthesis of monounsaturated fatty acids (MUFA). A number of studies support the hypothesis that SCD gene regulation and polymorphism may affect fatty acid composition and fat quality in meat and milk. Single nucleotide polymorphisms in the coding region of the bovine stearoyl-CoA desaturase gene have been predicted to result in ...
متن کاملAn Evolutionary Relationship Between Stearoyl-CoA Desaturase (SCD) Protein Sequences Involved in Fatty Acid Metabolism
Background: Stearoyl-CoA desaturase (SCD) is a key enzyme that converts saturated fatty acids (SFAs) to monounsaturated fatty acids (MUFAs) in fat biosynthesis. Despite being crucial for interpreting SCDs’ roles across species, the evolutionary relationship of SCD proteins across species has yet to be elucidated. This study aims to present this evolutionary relationship based on amino aci...
متن کاملIncreased intramuscular lipid synthesis and low saturation relate to insulin sensitivity in endurance-trained athletes.
Intramuscular triglyceride (IMTG) has received considerable attention as a potential mechanism promoting insulin resistance. Endurance-trained athletes have high amounts of IMTG but are insulin sensitive, suggesting IMTG content alone does not change insulin action. Recent data suggest increased muscle lipid synthesis protects against fat-induced insulin resistance. We hypothesized that rates o...
متن کاملLoss of stearoyl-CoA desaturase-1 improves insulin sensitivity in lean mice but worsens diabetes in leptin-deficient obese mice.
The lipogenic gene stearoyl-CoA desaturase (SCD)1 appears to be a promising new target for obesity-related diabetes, as mice deficient in this enzyme are resistant to diet- and leptin deficiency-induced obesity. The BTBR mouse strain replicates many features of insulin resistance found in humans with excess visceral adiposity. Using the hyperinsulinemic-euglycemic clamp technique, we determined...
متن کاملRole of stearoyl-CoA desaturase-1 in skeletal muscle function and metabolism.
Stearoyl-CoA desaturase-1 (SCD1) converts saturated fatty acids (SFA) into monounsaturated fatty acids and is necessary for proper liver, adipose tissue, and skeletal muscle lipid metabolism. While there is a wealth of information regarding SCD1 expression in the liver, research on its effect in skeletal muscle is scarce. Furthermore, the majority of information about its role is derived from g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 109 6 شماره
صفحات -
تاریخ انتشار 2010